Chlorine dioxide is a chemical compound with the formula ClO2 that exists as yellowish-green gas above 11 °C, a reddish-brown liquid between 11 °C and −59 °C, and as bright orange crystals below −59 °C. It is usually handled as an aqueous solution. It is commonly used as a bleach. More recent developments have extended its applications in food processing and as a disinfectant.
ClO2 crystallizes in the orthorhombic Pbca space group.
In 1933, Lawrence O. Brockway, a graduate student of Linus Pauling, proposed a structure that involved a three-electron bond and two single bonds. However, Pauling in his General Chemistry shows a double bond to one oxygen and a single bond plus a three-electron bond to the other. The valence bond structure would be represented as the resonance hybrid depicted by Pauling. The three-electron bond represents a bond that is weaker than the double bond. In molecular orbital theory this idea is commonplace if the third electron occupies an anti-bonding orbital. Later work has confirmed that the HOMO is indeed an incompletely filled antibonding orbital.
Chlorine dioxide can decompose violently when separated from diluting substances. As a result, preparation methods that involve producing solutions of it without going through a gas-phase stage are often preferred.
Traditionally, chlorine dioxide for disinfectant applications has been made from sodium chlorite or the sodium chlorite–hypochlorite method:
or the sodium chlorite–hydrochloric acid method:
or the chlorite–sulfuric acid method:
All three methods can produce chlorine dioxide with high chlorite conversion yield. Unlike the other processes, the chlorite–sulfuric acid method is completely chlorine-free, although it suffers from the requirement of 25% more chlorite to produce an equivalent amount of chlorine dioxide. Alternatively, hydrogen peroxide may be efficiently used in small-scale applications.
Addition of sulfuric acid or any strong acid to chlorate salts produces chlorine dioxide.
or with oxalic and sulfuric acid:
Over 95% of the chlorine dioxide produced in the world today is made by reduction of sodium chlorate, for use in pulp bleaching. It is produced with high efficiency in a strong acid solution with a suitable reducing agent such as methanol, hydrogen peroxide, hydrochloric acid or sulfur dioxide. Modern technologies are based on methanol or hydrogen peroxide, as these chemistries allow the best economy and do not co-produce elemental chlorine. The overall reaction can be written as:
As a typical example, the reaction of sodium chlorate with hydrochloric acid in a single reactor is believed to proceed through the following pathway:
which gives the overall reaction
The commercially more important production route uses methanol as the reducing agent and sulfuric acid for the acidity. Two advantages of not using the chloride-based processes are that there is no formation of elemental chlorine, and that sodium sulfate, a valuable chemical for the pulp mill, is a side-product. These methanol-based processes provide high efficiency and can be made very safe.
The variant process using sodium chlorate, hydrogen peroxide and sulfuric acid has been increasingly used since 1999 for water treatment and other small-scale disinfectant applications, since it produce a chlorine-free product at high efficiency, over 95%.
High-purity chlorine dioxide gas (7.7% in air or nitrogen) can be produced by the gas–solid method, which reacts dilute chlorine gas with solid sodium chlorite:
At partial pressures above (or gas-phase concentrations greater than 10% volume in air at STP) of ClO2 may explosively decompose into chlorine and oxygen. The decomposition can be initiated by light, hot spots, chemical reaction, or pressure shock. Thus, chlorine dioxide is never handled as a pure gas, but is almost always handled in an aqueous solution in concentrations between 0.5 and 10 grams per liter. Its solubility increases at lower temperatures, so it is common to use chilled water (5 °C, 41 °F) when storing at concentrations above 3 grams per liter. In many countries, such as the United States, chlorine dioxide may not be transported at any concentration and is instead almost always produced on-site. In some countries, chlorine dioxide solutions below 3 grams per liter in concentration may be transported by land, but they are relatively unstable and deteriorate quickly.
Chlorine dioxide has been used to bleach flour.
Chlorine dioxide is also superior to chlorine when operating above pH 7, in the presence of ammonia and amines, and for the control of biofilms in water distribution systems. Chlorine dioxide is used in many industrial water treatment applications as a biocide, including cooling towers, process water, and food processing.
Chlorine dioxide is less corrosive than chlorine and superior for the control of Legionella bacteria.
Chlorine dioxide is superior to some other secondary water disinfection methods, in that chlorine dioxide is not negatively impacted by pH, does not lose efficacy over time, because the bacteria will not grow resistant to it, and is not negatively impacted by silica and , which are commonly used potable water corrosion inhibitors. In the United States, it is an EPA-registered biocide.
It is more effective as a disinfectant than chlorine in most circumstances against waterborne pathogenic agents such as , bacteria, and protozoa – including the Microbial cyst of Giardia lamblia and the of Cryptosporidium.
The use of chlorine dioxide in water treatment leads to the formation of the by-product chlorite, which is currently limited to a maximum of 1 part per million in drinking water in the USA. This EPA standard limits the use of chlorine dioxide in the US to relatively high-quality water, because this minimizes chlorite concentration, or water that is to be treated with iron-based coagulants, because iron can reduce chlorite to chloride. The World Health Organization also advises a 1ppm dosification.
In addressing the COVID-19 pandemic, the U.S. Environmental Protection Agency has posted a list of many that meet its criteria for use in environmental measures against the causative coronavirus. Some are based on sodium chlorite that is activated into chlorine dioxide, though differing formulations are used in each product. Many other products on the EPA list contain sodium hypochlorite, which is similar in name but should not be confused with sodium chlorite because they have very different modes of chemical action.
Chlorine dioxide may be used to disinfect poultry by spraying or immersing it after slaughtering.
Chlorine dioxide may be used for the disinfection of Endoscopy, such as under the trade name Tristel. It is also available in a trio consisting of a preceding pre-clean with surfactant and a succeeding rinse with deionized water and a low-level antioxidant.
Chlorine dioxide may be used for control of zebra mussel and in water intakes.
Chlorine dioxide was shown to be effective in Bed bug eradication.
For water purification during camping, disinfecting tablets containing chlorine dioxide are more effective against pathogens than those using household bleach, but typically cost more.
In dilute concentrations, chlorine dioxide is an ingredient that acts as an antiseptic agent in some .
Chlorine dioxide is toxic, and limits on human exposure are required to ensure its safe use. The United States Environmental Protection Agency has set a maximum level of 0.8 mg/L for chlorine dioxide in drinking water. The Occupational Safety and Health Administration (OSHA), an agency of the United States Department of Labor, has set an 8-hour permissible exposure limit of 0.1 ppm in air (0.3 milligram/cubic meter) for people working with chlorine dioxide.
Chlorine dioxide has been fraudulently and illegally marketed as an ingestible cure for a wide range of diseases, including childhood autism and coronavirus. Children who have been given of chlorine dioxide as a supposed cure for childhood autism have suffered life-threatening ailments. The U.S. Food and Drug Administration (FDA) has stated that ingestion or other internal use of chlorine dioxide, outside of supervised oral rinsing using dilute concentrations, has no health benefits of any kind, and it should not be used internally for any reason.
Reduction of chlorate
Other processes
Handling properties
Uses
Bleaching
Water treatment
Use in public crises
Other disinfection uses
Other uses
Safety issues in water and supplements
Pseudomedicine
External links
|
|